P-ISSN: 2477-4391 E-ISSN: 2528-3022 VOLUME 11 NOMOR 2 JUNI 2025

PERBANDINGAN MEKANISME KLINIS YANG DISEBABKAN OLEH KELELAWAR TERHADAP SARS-CoV-2 DAN EBOLA

Comparison of Clinical Mechanism Caused by Bats Against SARS-CoV-2 and Ebola

Alfinny Boanerges¹, Risha Meidian Shabirah¹, Popi Sopiah²

- 1. Prodi Keperawatan Universitas Pendidikan Indonesia Kampus Sumedang
- 2. Profesi Ners, Universitas Pendidikan Indonesia Kampus Sumedang

Riwayat artikel

Diajukan: 18 Maret 2025 Diterima: 14 April 2025

Penulis Korespondensi:

- Risha Meidian
 Shabirah
- Program Studi Keperawatan Universitas Pendidikan Indonesia

email: rishameidian@upi.edu

Kata Kunci:

Ebola, Kelelawar, Mekanisme Klinis, SARS-CoV-2

Abstrak

Kelelawar telah lama dikenal sebagai reservoir alami bagi berbagai virus zoonosis, termasuk SARS-CoV-2 dan Ebola, yang memiliki dampak signifikan terhadap kesehatan global. Tujuan Penelitian ini bertujuan untuk mengeksplorasi dan membandingkan mekanisme klinis yang terkait dengan infeksi yang ditransmisikan oleh kelelawar, khususnya pada virus SARS-CoV-2 dan virus Ebola. Penelitian menggunakan narrative review dengan menggunakan database yaitu Google Scholar, PubMed, OpenAlex, dan Crossref. Awal pencarian jurnal ditemukan 420 jurnal dan dianalisis berdasarkan abstrak, tujuan penelitian, membaca full text, dan kriteria tahun 2015-2025. Tahap akhir ditemukan 7 jurnal yang relevan dengan tujuan penulisan. Hasil menunukkan (1) terdapat perbedaan signifikan dalam jalur penyebaran dan respons imun, (2) SARS-CoV-2 lebih berdampak menyebabkan wabah penyakit dibandingkan virus Ebola, (3) Kedua virus memiliki perbedaan terkait metode diagnosis yang mempengaruhi strategi penanganan. Penelitian ini diharapkan dapat memberikan pemahaman mendalam terhadap mekanisme klinis untuk dapat mengembangkan strategi pencegahan, diagnostik, dan terapi untuk penyakit zoonosis. Penelitian ini menekankan pentingnya pengawasan terhadap potensi penyebaran virus dari kelelawar guna mencegah wabah penyakit di masa depan.

Abstract

Bats have long been known as the natural reservoirs for various zoonotic viruses, including SARS-CoV-2 and Ebola, which have significant impacts on global health. *This study aims* explore and compare the clinical mechanisms associated with bat-transmitted infections, specifically SARS-CoV-2 and Ebola viruses. *The method used in this research is* a narrative review using databases including Google Scholar, PubMed, OpenAlex, and Crossref. Initial journal searches found 420 journals, which were analyzed based on abstracts, research objectives, full text reading, and criteria from 2015-2025. In the final stage, 7 journals relevant to the writing objective were found. *The results showed* significant differences in transmission pathways and immune responses triggered by both viruses, although they originate from the same host. SARS-CoV-2 has a greater impact in causing disease outbreaks compared to the Ebola virus. This research is expected to provide a deep understanding of clinical mechanisms to develop prevention strategies, diagnostics, and therapies for zoonotic diseases. This study emphasizes the importance of surveillance of potential virus spread from bats to prevent future disease outbreaks.

PENDAHULUAN

Zoonosis adalah penyakit atau infeksi yang ditularkan dari hewan ke manusia, dan telah menjadi ancaman kesehatan global. Penyebab utama zoonosis adalah patogen seperti bakteri, virus atau parasit, bahkan agen yang tidak konvensional juga dapat terlibat. Penyebaran zoonosis dapat terjadi melalui kontak langsung atau melalui makanan, air, maupun lingkungan yang terkontaminasi. Potensi penyebaran zoonosis yang begitu luas menjadikannya isu kesehatan yang terus memerlukan perhatian serius. Menurut penelitian yang dilakukan oleh Taylor pada tahun 2001 diperkirakan lebih dari 60% penyakit menular pada manusia diklasifikasikan sebagai zoonosis. Agen infeksius pada zoonosis dapat beragam-ragam seperti serangga, hewan ternak, hewan peliharaan dan kelelawar (Usma Aulia et al., 2024). Pada tahun 1950 ditemukan virus yang berpotensi menyebabkan wabah dengan kemungkinan besar berasal dari agen infeksius kelelawar (Nur Janti, 2020). Hewan kelelawar ini menjadi salah satu hewan yang paling banyak membawa virus yang berbahaya bagi manusia.

Kelelawar dapat menjadi agen infeksius karena memiliki keunikan dalam mengadaptasi diri terhadap virus yang menjadi pusat perhatian ilmiah, terutama karena kemampuan mereka dalam bertahan hidup dengan membawa virus tanpa menunjukkan gejala penyakit yang fatal. Kelelawar memiliki proporsi pembawa virus zoonosis yang lebih banyak dibandingkan mamalia lainnya (Olival & Hayman, 2014), karena keberadaan virus dalam tubuh kelelawar didukung oleh kemampuan tubuh mereka yang dapat menahan suhu tinggi hingga 40 derajat Celcius yang dapat memungkinkan virus untuk bertahan dan berkembang biak.

Penelitian dari University of California (UC) Berkeley, Amerika Serikat, menemukan bahwa sistem kekebalan yang kuat pada kelelawar terhadap virus dapat menyebabkan virus bereplikasi lebih cepat. Ketika virus ini menginfeksi mamalia dengan sistem kekebalan yang lebih lemah, seperti manusia, virus tersebut dapat menyebabkan kerusakan yang fatal pada sistem kekebalan tubuh. Pada kelelawar, infeksi virus memicu respons tubuh yang mencoba menghalangi virus keluar dari sel, yang pada gilirannya mempercepat replikasi virus sebelum sistem imun tubuh siap menghadapinya. Gangguan terhadap habitat kelelawar yang hidup berdampingan dengan manusia mengakibatkan kelelawar dapat dengan mudah menyebarkan virus dalam bentuk air liur, urin, dan feses, yang kemudian dapat menginfeksi manusia dan sekitarnya (Brook et al., 2020).

Meskipun kelelawar berperan sebagai agen infeksius dalam penyebaran virus, spesies kelelawar yang menjadi reservoir masing-masing virus dapat berbeda. Misalnya, SARS-CoV-2 dan MERS yang diyakini berasal dari kelelawar tapal kuda (*Rhinolophus affinis* dan *Rhinolophus sinicus*) yang hidup di gua-gua dan hutan tertutup di Asia. Sementara itu, virus Ebola dan virus Nipah lebih banyak dikaitkan dengan kelelawar pemakan buah dari genus *Pteropus* dan *Hypsignathus monstrosus* yang hidup di Afrika dan lebih sering berinteraksi dengan manusia di area terbuka seperti perkebunan dan hutan tropis (Allocati et al., 2016; Zhou et al., 2020).

Penelitian (Popovic, 2022) menemukan meskipun kedua virus memiliki agen infeksius yang sama namun dampak yang dihasilkan memiliki perbedaan. Dalam kasus virus SARS-CoV-2 penyebaran berlangsung hingga menyebabkan pandemi hampir di seluruh negara. Berbeda halnya dengan virus SARS-CoV-2, virus ebola tidak menyebabkan dampak pandemi yang memengaruhi seluruh dunia. Oleh karena itu, memahami terkait perbedaan mekanisme klinis antara kedua virus dapat mengetahui mengapa virus ebola tidak menyebabkan pandemi seperti virus SARS-CoV-2 meskipun agen kedua infeksius mereka sama.

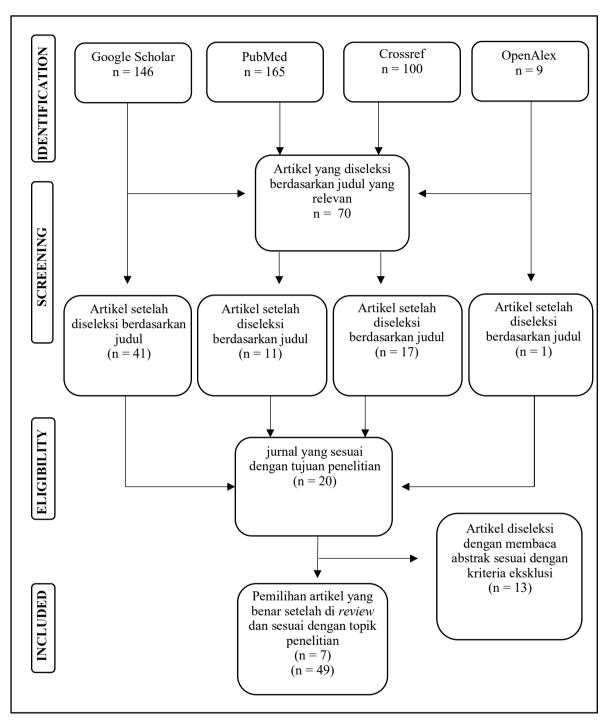
Penelitian menyebutkan bahwa terdapat perbedaan antara penyebaran virus SARS-CoV-2, Ebola, Nipah, & MERS. Selain kelelawar buah, agen infeksius virus Nipah dapat berasal dari babi, kuda, dan anjing (Admin Infem, 2021). Sedangkan, untuk virus MERS diduga terdapat agen infeksius selain kelelawar yaitu unta (InfoSehat FKUI, 2023).

Sedangkan, virus SARS-CoV-2 dan Ebola diduga disebarkan tanpa perantara hewan lain. Diperjelas oleh Taufiq P. Nugraha, sebagai peneliti satwa liar dari Pusat Penelitian Biologi LIPI menduga dalam kasus SARS-CoV-2 dan Ebola terjadi karena orang yang berinteraksi langsung di pasar hewan di Wuhan menjadi yang pertama terkena penyakit infeksi tersebut. Jika berkaca pada kasus diatas kelelawar berperan dalam ekspansi di luar habitatnya dan ekspansi manusia ke dalam habitat kelelawar, sehingga keduanya dapat saling berinteraksi bebas dan beresiko tinggi dalam penyebaran penyakit ini (Zacharias Wuragil, 2020). Meskipun agen infeksius kedua virus ini sama, tetapi memiliki cara penyebaran yang berbeda.

Penyebaran virus SARS-COV-2 dan virus Ebola memiliki perbedaan yang signifikan. Pada virus SARS-CoV-2 penyebaran berlangsung sangat cepat sehingga berdampak hampir ke seluruh negara. Berbanding terbalik dengan penyebaran virus Ebola yang hanya berdampak pada beberapa negara saja. Perbedaan kedua virus ini juga terjadi dalam hal patogenesis dan manifestasi klinis yang menyebabkan tingkat kematian yang tinggi. Namun, Studi lain menunjukan bahwa virus ebola memiliki tingkat kematian yang jauh lebih tinggi dibandingkan virus SARS-CoV-2. Sekitar 90% orang yang terinfeksi meninggal dikarenakan terkena virus Ebola (Wisnu AS, 2020), sedangkan untuk virus Covid-19 tingkat kematian sebanyak 9.4% (Danu Damarjati, 2022).

Meskipun keduanya merupakan virus yang berasal dari agen infeksius yang sama tetapi, mekanisme klinis, respons imun, serta metode penularan antara kedua virus ini memiliki perbedaan, sehingga memerlukan cara penanganan yang berbeda pula. Tujuan Penelitian dilakukan agar dapat mengetahui perbandingan mekanisme klinis antara virus SARS-CoV-2 dan Ebola yang menyebabkan perbedaan dalam tingkat penyebaran kedua virus.

METODE


Pada penelitian ini digunakan metode yaitu scoping review untuk meneliti perbandingan mekanisme klinis yang disebabkan oleh kelelawar terhadap SARS-CoV-2 dan Ebola. Scoping review merupakan istilah yang digunakan untuk menyusun, menggali, dan mengintegrasikan literatur yang relevan mengenai suatu topik penelitian tertentu. Pendekatan ini tidak hanya bertujuan untuk menyajikan gambaran menyeluruh tentang apa yang sudah diketahui dalam literatur terkait, tetapi juga untuk mengidentifikasi kesenjangan pengetahuan yang ada. Scoping review adalah cara yang dilakukan oleh peneliti untuk dapat mengembangkan pemahaman yang lebih dalam tentang keragaman pendekatan dan temuan yang ada sebelum merumuskan pertanyaan penelitian yang lebih spesifik.

Penelitian ini akan menganalisis hasil penelitian yang sudah dilakukan dan diterbitkan dalam jurnal-jurnal terdahulu baik nasional maupun internasional yang kemudian akan dianalisis dan dilakukan evaluasi sehingga dapat merumuskan kerangka teori secara komprehensif. Dengan memperhatikan kriteria khusus, yaitu (1) Jurnal/Artikel berbahasa inggris (2) tahun terbit antara 2015-2025 (3) Jurnal/Artikel sesuai dengan kata kunci yang digunakan. Kata kunci yang digunakan pada proses pencarian jurnal yang relevan yaitu, Mekanisme Klinis, SARS-CoV-2, Ebola, Kelelawar.

Sumber data diperoleh dari database ilmiah terpercaya yang berasal dari google scholar, pubmed, Crossref, dan OpenAlex untuk memastikan relevansi dan validitas informasi pengumpulan data dilakukan dengan kata kunci yang relevan dengan penelitian ini yaitu, Mekanisme Klinis, SARS-CoV-2, Ebola, Kelelawar. Studi yang tidak relevan dapat berupa opini dan editorial akan dikecualikan dalam artikel ini. Analisis yang dilakukan yaitu dengan cara kualitatif dengan mengelompokkan beberapa jurnal yang relevan dengan penelitian ini.

Tahap awal pencarian jurnal, peneliti menemukan 420 jurnal dengan rincian jurnal pada database Crossref sebanyak 100 jurnal, Google Scholar 146 jurnal, Pubmed 165 jurnal, dan OpenAlex sebanyak 9 jurnal yang kemudian jurnal tersebut dikaji. Dari berbagai jurnal, peneliti mendapatkan 138 jurnal yang diseleksi berdasarkan judul yang relevan dengan

rincian jurnal Google Scholar sebanyak 41 jurnal, PubMed 11 jurnal, Crossref 17 jurnal, dan OpenAlex 1 jurnal. Tahap selanjutnya, peneliti menemukan 20 jurnal yang relevan dengan tujuan penelitian. Pada tahap akhir seleksi jurnal peneliti mendapatkan 13 jurnal yang telah diseleksi dengan membaca abstrak sesuai dengan kriteria eksklusi dan 7 jurnal yang sesuai dengan kata kunci penelitian ini. Setelah itu jurnal dan artikel dianalisis dan dikaji kemb

Gambar 1. Seleksi Jurnal Menggunakan Diagram Prisma

HASIL Tabel 1

Tabel			D 11'1	3.5 1	T 1 1	*** "
No.	Nama	Database	Publisher	Metode Penelitian	Judul	Hasil
1.	Alsamman M. Alsamman, Hatem Zayed.	Crossref	PLoS One. 10 December 2020; 15(12):e0243270. (5-12)	Analisis komparatif	The transcriptomic profiling of COVID-19 compared to SARS, MERS, Ebola, and H1N1	Penelitian ini membandingkan data SARS-COV-2 Transcriptom dengan virus lain seperti SARS, MERS, EBOV, dan H1N1 untuk mengidentifikasi persamaan dan perbedaan dalam respons terhadap infeksi gen seluler. Lebih lanjut, beberapa sitokin, khususnya IL-8 dan IL-6, telah menunjukkan hubungan penting dengan infeksi SARS-COV-2 dan EBOV. Analisis interaksi protein-protein (PPI) menunjukkan bahwa gen dengan aktivitas interaksi yang tinggi juga ditemukan pada infeksi virus lain, termasuk EBOV. Oleh karena itu, kedua virus ini tidak hanya memiliki sifat genetik dan molekuler yang serupa, tetapi juga memiliki respons imun yang serupa dalam tubuh HOS.
2.	Marko Popovic	Crossref	Elsevier. Volume 22, December 2022, 100236. (4-5)	Review Artikel	Why doesn't Ebola virus cause pandemics like SARS-CoV-2?	Hasil penelitian ini menemukan bahwa ebola menyebar melalui kontak langsung dengan cairan tubuh atau permukaan yang terkontaminasi, sehingga lebih mudah dikendalikan. SARS-CoV-2 menyebar lewat droplet dan aerosol, membuat penularannya lebih cepat dan sulit terdeteksi, terutama dari orang tanpa gejala. Dengan demikian, virus SARS-CoV-2 dapat menyebabkan wabah pandemi, sementara virus Ebola tidak menyebabkan pandemi.
3.	Abhishak Raj Devaraj, Victor Jose Marianthiran	PubMed	Rev Soc Bras Med Trop. Volume 58, 7 February 2025. (6-7)	Kuantitatif	Recurrent unit Modeling of SARS-CoV-2, SARS, MERS, and Ebola virus Advancements in Viral Genomics: Gated ses (2025)	Terdapat empat sampel genom virus dalam penelitian ini, yaitu SARS-CoV-2, SARS, MERS, dan Ebola, sebagai dasar data untuk melatih model Gated Recurrent Unit (GRU). Model GRU terbukti efektif dalam menganalisis dan memprediksi sekuens virus, terutama SARS-CoV-2, SARS, dan Ebola. Kemampuannya dalam memahami evolusi virus, mengidentifikasi target obat, serta mendeteksi pola dan variasi genetik membuatnya berguna untuk pengembangan strategi vaksin yang lebih efektif. Hasil penelitian menunjukkan bahwa model GRU memiliki akurasi yang tinggi dalam memprediksi sekuens virus RNA dan dapat digunakan untuk membandingkan karakteristik genetik berbagai jenis virus.

No.	Nama	Database	Publisher	Metode Penelitian	Judul	Hasil
4.	Siddiqui R, Khan S, Khan NA	PubMed	Acta Virologica. Volume 65 edisi 4, January 2021. (355-357)	Literature Review	Ebola virus disease: Current perception of clinical features, diagnosis, pathogenesis, and therapeutics	Studi ini menggunakan data dari studi klinis dan epidemiologis sebelumnya yang mengumpulkan informasi tentang gejala, diagnosis, etiologi dan pengobatan penyakit Ebola. Penyakit ini disebabkan oleh virus Ebola dengan gejala demam, sakit kepala, nyeri otot, muntah, diare, ruam dan pendarahan. Virus ini menular melalui cairan tubuh orang yang terinfeksi. Pengobatan untuk penyakit ini berfokus pada perawatan intensif, infus, oksigen dan transfusi darah. Studi terbaru menunjukkan bahwa virus Ebola dapat ditularkan melalui kontak kulit, dan berbagai sel terinfeksi. Pada tanggal 30 Januari 2025, dilaporkan wabah ebola yang terjadi di Uganda disebabkan oleh virus Sudan, dan melaporkan penguji klinis untuk spesies vaksin ebola dari virus sudan telah dimulai di negara itu.
5.	Jesús Olivero, Julia E. Fa, Miguel Á. Farfán, Ana L. Márquez, Raimundo Real, F. Javier Juste, Siv A. Leendertz, Robert Nasi	Google Scholar	Mammal Review. Volume 50, edisi 1, 30 October 2019 (6-11)	Kuantitatif	Human activities link fruit bat presence to Ebola virus disease outbreaks	Hasil penelitian menunjukkan adanya hubungan antara intervensi manusia terhadap lingkungan dan meningkatnya kemungkinan penyebaran virus Ebola. Aktivitas deforestasi menyebabkan gangguan pada keseimbangan ekosistem yang berdampak pada pola persebaran dan perilaku kelelawar buah, yang berperan sebagai inang alami virus. Pergeseran ini mendorong kelelawar menjangkau wilayah baru, termasuk area dengan intensitas kegiatan manusia yang tinggi. Kontak langsung manusia dengan kelelawar buah yang terinfeksi meningkatkan risiko penularan virus Ebola, terutama di wilayah yang mendukung ekosistem virus tersebut. Hal ini memperbesar peluang wabah terjadi. Pemahaman mendalam tentang aspek ekologis tersebut menjadi landasan penting dalam mengembangkan strategi pencegahan dan pengendalian penyakit zoonotik.
6.	Beatriz Escudero- Perez, Philip Lawrence, Jaview	Google Scholar	Frontiers. Volume 14, 17 April 2023 (2-14)	Literature review	Immune correlates of protection for SARS- CoV-2, Ebola, and Nipah virus infection	Penelitian ini meninjau berbagai studi tentang infeksi SARS-CoV-2, Ebola, dan Nipah, yang semuanya ditularkan oleh kelelawar. Hasilnya menunjukkan bahwa sistem kekebalan tubuh, baik yang bawaan maupun adaptif, memainkan peran penting dalam melawan virus-virus ini. Studi ini juga menyebutkan bahwa ketiga infeksi tersebut bisa digolongkan sebagai sindrom disritmia imun akut

No.	Nama	Database	Publisher	Metode Penelitian	Judul	Hasil
	Castillo- Olivares					karena adanya ketidakseimbangan dalam respons imun. Selain itu, penelitian ini memberi gambaran tentang potensi penggunaan imunomodulator untuk terapi dan pengembangan vaksin.
7.	Jin Tian, Jiumeng Sun, Dongyan Li, Ningning Wang, Lifang Wang, Chang Zhang, Xiaorong Meng, Xiang Ji, Marc A. Suchard, Xu Zhang, Alexander Lai, Shuo Su, Michael Veit	Open Alex	CellPress. Volume 39, edisi 11, 14 June 2022 (2-7)	Kuantitatif	Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats	Penelitian ini membahas peran kelelawar buah sebagai reservoir alami virus yang dapat menular antarspesies, termasuk manusia. Hasilnya menunjukkan bahwa perubahan lingkungan seperti deforestasi, urbanisasi, dan perubahan iklim berpengaruh besar terhadap transmisi virus. Penelitian juga menggali interaksi molekuler antara protein permukaan virus dan reseptor sel inang untuk memahami mekanisme masuk dan replikasi virus, yang penting untuk pencegahan dan pengembangan terapi penyakit seperti SARS-CoV-2 dan Ebola. Fokus utama penelitian adalah peran dinamika ekologis dalam mengurangi risiko penyebaran penyakit.

PEMBAHASAN

Kelelawar berperan penting sebagai reservoir alami bagi berbagai virus zoonosis, termasuk SARS-CoV-2 dan Ebola. Keunikan kelelawar terletak pada kemampuannya membawa virus tanpa menunjukkan gejala penyakit, sementara penularan ke manusia dapat terjadi melalui kontak langsung, konsumsi daging kelelawar, atau melalui hewan perantara. Karakteristik biologis dan ekologis kelelawar yang khas telah menjadikannya host sempurna bagi lebih dari 12.000 virus teridentifikasi (Jin Tian et al., 2022).

Virus RNA mendominasi populasi virus yang berasosiasi dengan kelelawar dan cenderung menyebabkan peristiwa penularan lintas spesies dengan patogenisitas tinggi. SARS-CoV-2 dan Ebola merupakan virus RNA paling umum yang ditemukan pada kelelawar, dengan sekitar 80% virus RNA teridentifikasi berasal dari tiga keluarga kelelawar: Vespertilionidae, Rhinolophidae, dan Pteropodidae. Genus Rhinolophidae diketahui sebagai inang alami SARS-CoV-2, sedangkan Ebola berasal dari Pteropodidae (Jin Tian et al., 2022). Meskipun berasal dari Genus yang berbeda menjadikan keduanya memiliki perbedaan dalam respons imun dan pathogenesis yang memengaruhi cara penyebaran dari kedua virus tersebut.

Penyebaran virus SARS-Cov-2 dan Ebola sangat berpengaruh dalam penyebaran yang menyebabkan pandemi. Virus Ebola diketahui tidak menyebabkan wabah pandemi seperti virus SARS-CoV-2. Hal itu dijelaskan melalui Penelitian (Popovic, 2022) yang menunjukkan bahwa perbedaan dalam cara penyebarannya merupakan salah satu hal yang membuat virus Ebola tidak menyebabkan pandemi seperti SARS-CoV-2. Ebola menyebar melalui kontak langsung dengan cairan tubuh individu yang terinfeksi, sedangkan SARS-CoV-2 menyebar melalui droplet pernapasan dan partikel udara, yang membuatnya lebih mudah menyebar secara luas. Penyebaran asimptomatik SARS-CoV-2 juga menambah kesulitan dalam pengendalian, sementara Ebola biasanya tidak menyebar melalui individu yang tidak menunjukkan gejala. Penelitian (Popovic, 2022) menemukan bahwa perkembangan virus SARS-CoV-2 dan Ebola berbeda dan dipengaruhi oleh beberapa faktor. Virus SARS-CoV-2 berkembang dan mengalami mutasi genetik, menghasilkan varian baru seperti Delta dan Omicron yang memiliki tingkat infektivitas lebih tinggi. Sementara itu, penyebaran virus Ebola lebih dipengaruhi oleh faktor lingkungan dan perilaku manusia, seperti konsumsi daging hewan liar dan kontak langsung dengan individu yang terinfeksi. Penyebaran Ebola sering kali terjadi di daerah dengan sistem kesehatan yang lemah, yang membuat penanganan wabah menjadi lebih sulit.

Gen-gen tertentu seperti NRCAM dan SAA2 yang terlibat dalam respons inflamasi parah, serta FGF1 dan FOXO1 yang terkait dengan regulasi imun, berkaitan dengan respons seluler terhadap kedua virus. Beberapa sitokin, terutama IL-8 dan IL-6, menunjukkan asosiasi kunci dengan infeksi SARS-CoV-2 dan Ebola. Analisis interaksi protein-protein (PPI) mengkonfirmasi bahwa gen dengan aktivitas interaksi tinggi pada SARS-CoV-2 juga ditemukan pada infeksi Ebola, menunjukkan kesamaan ciri genetik, molekuler, dan pola respons imun (Alsamman & Zayed, 2020).

Meskipun demikian, rendahnya jumlah Differentially Expressed Genes (DEG) yang dibagikan secara unik antara kedua virus mengindikasikan keunikan tanda tangan molekuler SARS-CoV-2 dan tingginya patogenisitas serta agresivitas keduanya. Hal ini menunjukkan bahwa walaupun SARS-CoV-2 dan Ebola memiliki kesamaan genetik dan berasal dari kelelawar, respons imun tubuh manusia terhadap kedua infeksi ini tidak sepenuhnya identik.

Penelitian (Alsamman & Zayed, 2020) menemukan bahwa virus SARS-CoV-2 memiliki ekspresi berlebihan dari faktor transkripsi MAF dibandingkan dengan virus Ebola. Faktor transkripsi MAF adalah protein yang memainkan peran penting dalam respons imun tubuh terhadap berbagai penyakit. Protein ini membantu mengatur ekspresi gen yang spesifik untuk penyakit tertentu, yang pada gilirannya mempengaruhi bagaimana tubuh merespons infeksi. Artinya, ekspresi berlebihan dari MAF pada virus SARS-CoV-2

menunjukkan bahwa faktor ini berperan lebih signifikan dalam mengatur respons imun terhadap infeksi virus-virus tersebut dibandingkan dengan Ebola.

SARS-CoV-2 menunjukkan tropisme utama terhadap jaringan pernapasan karena keberadaan reseptor ACE2 yang melimpah pada sel epitel paru-paru. Tetapi kedua hemoragik, termasuk perdarahan dari lokasi tusukan jarum dan perdarahan mukosa, adalah ciri khas penyakit Ebola lanjut sel imun, yang semuanya berkontribusi pada kemampuan virus untuk bertahan dalam tubuh dan N, yang menghambat jalur sinyal interferon (Blanco-Melo et al., 2020). Selain itu, beberapa protein SARS-CoV-2 dapat mengganggu presentasi antigen, menghambat aktivasi sel T, atau menginduksi apoptosis sel imun, yang semuanya berkontribusi pada kemampuan virus untuk bertahan dalam tubuh termasuk makrofag, sel dendritik, dan sel endotel. Kemampuannya untuk menginfeksi sel-sel sistem imun menjadi kunci dalam patogenesisnya. Infeksi makrofag dan sel dendritik menyebabkan pelepasan sitokin proinflamasi yang berlebihan, sementara infeksi sel endotel menyebabkan gangguan integritas pembuluh darah. Ini mengakibatkan peningkatan permeabilitas vaskular, koagulopati, dan akhirnya syok hipovolemik rona (Baseler, Chertow, Johnson, Feldmann, & Morens, 2017). Tetapi kedua virus ini juga memiliki kemampuan untuk menghindari deteksi dari sistem imun.

SARS-CoV-2 telah mengembangkan beberapa mekanisme untuk menghindar dari deteksi dan eliminasi oleh sistem imun. Virus ini menekan respons interferon tipe I pada tahap awal infeksi melalui protein seperti ORF3b, ORF6, dan N, yang menghambat jalur sinyal interferon (Blanco-Melo et al., 2020). Selain itu, beberapa protein SARS-CoV-2 dapat mengganggu presentasi antigen, menghambat aktivasi sel T, atau menginduksi apoptosis sel imun, yang semuanya berkontribusi pada kemampuan virus untuk bertahan dalam tubuh host.

Virus Ebola memiliki mekanisme penghindaran imun yang lebih agresif. Protein VP35 menghambat produksi interferon dengan mencegah deteksi RNA virus oleh reseptor pengenal pola, sementara VP24 memblokir jalur sinyal interferon dengan menghambat translokasi nuklir STAT1 (Edwards, Dworkin, Sullivan, Turk, & Wasan, 2016). GP (glikoprotein) Ebola juga berperan dalam penghindaran imun dengan menutupi epitop virus dan menginduksi apoptosis limfosit. Kombinasi mekanisme ini menghasilkan penekanan imun yang parah dan memungkinkan replikasi virus yang tidak terkendali dalam menginfeksi manusia.

SARS-CoV-2 telah terbukti memiliki dampak signifikan pada sistem koagulasi, dengan banyak pasien COVID-19 menunjukkan tanda-tanda koagulopati. Infeksi ini menginduksi keadaan hiperkoagulasi yang ditandai dengan peningkatan D-dimer, fibrinogen, dan produk degradasi fibrin. Mekanisme yang mendasari termasuk aktivasi endotel oleh virus, peradangan sistemik, dan respons imun yang tidak tepat. Komplikasi trombotik, termasuk emboli paru dan stroke, telah dilaporkan pada pasien COVID-19 dan berkontribusi pada morbiditas dan mortalitas (Ackermann et al., 2020).

Pada virus Ebola menyebabkan gangguan koagulasi yang lebih parah, dengan koagulopati konsumtif dan sindrom disfungsi multiorgan yang sering terjadi pada tahap akhir penyakit. Infeksi sel endotel oleh virus menyebabkan aktivasi endotel yang luas, pelepasan faktor jaringan, dan penurunan produksi protein antikoagulan seperti protein C. Kombinasi dari aktivasi koagulasi, penghambatan fibrinolisis, dan disfungsi endotel menyebabkan pembentukan mikrotrombi yang meluas, yang berkontribusi pada iskemia organ dan kegagalan multi organ (McElroy & Shevlin, 2014). Manifestasi hemoragik, termasuk perdarahan dari lokasi tusukan jarum dan perdarahan mukosa, adalah ciri khas penyakit Ebola lanjut. Selain memiliki perbedaan pada dampak sistem koagulasi darah, terdapat juga perbedaan pada cara penyebaran.

Perlindungan sistem kesehatan terhadap virus seperti SARS-CoV-2 dan Ebola sangat bergantung pada respons imun host. Respons imun tubuh terhadap kedua virus ini menunjukkan perbedaan yang signifikan yaitu pada SARS-CoV-2 respons imun tubuh

memiliki kemampuan untuk menghambat respons interferon tipe I, yang memungkinkan virus berkembang dalam tubuh manusia tanpa terdeteksi pada fase awal infeksi. Hal ini menyebabkan penyebaran virus menjadi lebih luas sebelum sistem imun mulai bereaksi secara signifikan. Sebaliknya, virus Ebola memicu respons imun yang berlebihan atau cytokine storm, yang menyebabkan kerusakan jaringan luas dan kegagalan organ akibat hiperaktivasi sistem imun (Escudero-Pérez, Lawrence, & Castillo-Olivares, 2023).

Analisis transkriptomik menunjukkan perbedaan respons imun dan patogenesis antara SARS-CoV-2 dan Ebola yang berkontribusi pada variasi transmisi dan keparahan penyakit. Namun demikian, kedua virus ini memiliki kesamaan dalam modulasi gen antivirus host dan istilah Gene Ontology (GO) terkait infeksi. Penelitian mengungkapkan pola yang mirip dalam respons gen host terhadap infeksi, termasuk jalur molekuler signifikan seperti rheumatoid arthritis, sistem sinyal AGE-RAGE, malaria, hepatitis B, dan influenza A (Alsamman & Zayed, 2020).

Faktor patogenisitas dan agresivitas berperan penting dalam menjelaskan mengapa virus Ebola tidak menyebabkan pandemi seperti SARS-CoV-2. Ebola menggunakan reseptor TIM-1 untuk mengikat sel inang yang rentan. TIM-1 berfungsi sebagai reseptor untuk filovirus pada permukaan epitel mukosa memberikan pemahaman mekanistik tentang akar masuk ke dalam tubuh manusia (Kondratowicz et al., 2011). SARS-CoV-2 menggunakan reseptor ACE2 yang mekanisme pengikatan antigen ke reseptor mirip dengan interaksi protein-ligan, meskipun reseptornya berbeda. Dalam hal ini, tingkat pengikatan reseptor dan masuknya virus ke dalam sel inang didorong oleh energi pengikatan Gibbs.

Energi pengikatan Gibbs dimaksudkan reaksi pengikatan yang lebih cepat dan masuknya virus yang lebih cepat ke dalam sel inang. Hal ini membuat virus SARS-CoV-2 menyebar jauh lebih cepat daripada Ebola. Selain itu, penelitian (Popovic, 2022) menemukan bahwa kerentanan mukosa di jalur pernapasan atas jauh lebih besar untuk SARS-CoV-2 daripada virus Ebola. Hal ini memungkinkan masuknya virus yang lebih cepat ke dalam sel inang, penularan virus yang lebih cepat antar manusia, mengarah ke penyebaran yang lebih luas dan mengakibatkan pandemi.

Mekanisme virus SARS-CoV-2 memasuki sel manusia dengan menempel pada reseptor ACE2 yang banyak ditemukan pada sel epitel saluran pernapasan. Virus ini menggunakan protein spike untuk mengikat reseptor dan memulai fusi membran, yang memungkinkan genom RNA virus memasuki sel. Setelah masuk, RNA virus diterjemahkan untuk menghasilkan protein-protein virus dan RNA baru, yang kemudian dirakit menjadi partikel virus baru dan dilepaskan melalui eksositosis atau lisis sel (V'kovski, Kratzel, Steiner, Stalder, & Thiel, 2021).

Berbeda dengan SARS-CoV-2, virus Ebola memasuki sel melalui interaksi dengan berbagai reseptor seperti TIM-1, NPC1, dan DC-SIGN, yang memungkinkannya menginfeksi berbagai jenis sel. Setelah masuk, virus Ebola melepaskan genom RNA-nya dan menggunakan mesin sel untuk memproduksi protein virus dan menyalin RNA-nya. Virus ini memiliki kemampuan unik untuk mengganggu respons imun bawaan melalui protein VP35 dan VP24, yang memblokir sinyal interferon, sehingga memungkinkan virus berkembang biak tanpa hambatan (Messaoudi, Amarasinghe, & Basler, 2015). Virus SARS-CoV-2 dan Ebola ini hidup dalam sel inang karena virus termasuk parasit yang membutuhkan sel inang untuk bereplikasi dan kedua virus ini menunjukkan perbedaan tropisme. Tropisme adalah sifat infeksi dari sebagian patogen yang hanya spesifik menyerang inang dan jaringan inang tertentu.

Kedua virus ini, meskipun sama-sama diduga berasal dari reservoir kelelawar, telah mengalami evolusi yang berbeda, menghasilkan mekanisme patogen yang distingtif. SARS-CoV-2 mengadopsi strategi invasi melalui reseptor ACE2 yang tersebar luas di saluran pernapasan, menyebabkan dominasi gejala respiratori dan komplikasi trombotik mikrovaskular (Letko, Marzi, & Munster, 2020; Zhou et al., 2020), sementara virus Ebola menunjukkan tropisme yang lebih luas dengan penargetan khusus pada sel-sel kekebalan

dan endotel vaskular, menyebabkan supresi imun yang parah dan sindrom perdarahan yang mematikan (Leroy et al., 2005; Olival & Hayman, 2014).

Perbedaan fundamental dalam patofisiologi ini, meskipun keduanya memanfaatkan kelelawar sebagai inang alami, mencerminkan adaptasi evolusioner virus terhadap mekanisme transmisi dan persistensi yang berbeda (Fan, Zhao, Shi, & Zhou, 2019). Pemahaman mendalam tentang perbedaan mekanisme klinis ini sangat penting untuk pengembangan strategi terapi dan preventif yang spesifik dan efektif untuk kedua penyakit zoonosis yang mengancam kesehatan global ini.

Infeksi SARS-CoV-2 menunjukkan spektrum manifestasi klinis yang luas, mulai dari asimtomatik hingga pneumonia berat dan kegagalan multi organ. Pada kasus ringan, imunitas bawaan umumnya cukup untuk mengendalikan replikasi virus. Pada kasus parah, terjadi ketidakseimbangan respons imun dengan peningkatan sitokin proinflamasi (IL-6, TNF-α) yang berlebihan, penurunan sel T, dan aktivasi berlebihan neutrofil dan monosit, yang berkontribusi pada kerusakan jaringan (Gustine & Jones, 2021). Serokonversi dengan produksi antibodi biasanya terjadi dalam 1-2 minggu setelah onset gejala.

Penyakit virus Ebola ditandai dengan onset mendadak demam, malaise, mialgia, dan sakit kepala, diikuti oleh manifestasi gastrointestinal (mual, muntah, diare), ruam, dan perdarahan pada kasus parah. Respon imun terhadap Ebola dicirikan oleh penekanan awal respons imun bawaan, diikuti oleh aktivasi imun yang tidak terkendali. Kegagalan untuk mengembangkan respons antibodi yang kuat berkorelasi dengan hasil yang fatal, sedangkan pasien yang bertahan umumnya mengembangkan antibodi netralisasi yang kuat dan respons sel T yang efektif (A, P, & M, 2016). Tingginya kadar sitokin proinflamasi dan kemokin dalam sirkulasi berkorelasi dengan keparahan penyakit dan hasil yang fatal. Hal ini juga berdampak pada sistem Koagulasi darah.

Pencegahan perkembangan virus didalam tubuh dapat dibatasi dengan memeriksakan tubuh agar dapat dideteksi secara cepat sebelum perkembangan virus di dalam tubuh mulai meluas. Metode SARS-CoV-2 umumnya dideteksi menggunakan uji PCR pada sampel nasofaring, yang memungkinkan mendeteksi pada individu tanpa gejala. Sebaliknya, diagnosis Ebola lebih kompleks karena sering menyerupai penyakit lain seperti malaria dan demam tifoid, sehingga memerlukan kombinasi uji PCR, ELISA untuk mendeteksi antigen virus, serta analisis darah untuk melihat tanda-tanda koagulasi intravaskular dan kegagalan organ (Siddiqui, Khan, & Khan, 2022).

Perbedaan dalam metode diagnosis mempengaruhi strategi penanganan pada virus SARS-CoV-2 dan Ebola. Penelitian (Escudero-Pérez et al., 2023) menunjukkan bahwa antibodi netralisasi dan respons sel T memainkan peran penting dalam mengendalikan infeksi dan mencegah penyakit berat. Vaksinasi dan terapi yang menargetkan komponen spesifik dari sistem kekebalan tubuh dapat memberikan perlindungan yang efektif terhadap virus seperti SARS-CoV-2 dan Ebola. Selain itu, penelitian (Escudero-Pérez et al., 2023) menunjukkan bahwa respons kekebalan yang efektif tidak hanya tergantung pada antibodi netralisasi dan respons sel T, tetapi juga melibatkan berbagai komponen lainnya seperti sel B memori, sel NK (natural killer), dan sitokin.

Pada kasus SARS-CoV-2, vaksin mRNA seperti Pfizer-BioNTech dan Moderna telah menunjukkan efektivitas tinggi dalam memicu respons imun yang kuat, dengan antibodi netralisasi yang mampu menghambat masuknya virus ke dalam sel dan respons sel T yang membantu menghancurkan sel yang terinfeksi. Demikian pula, vaksin Johnson & Johnson yang berbasis vektor adenovirus telah menunjukkan kemampuan serupa dalam memberikan perlindungan (Escudero-Pérez et al., 2023).

Untuk Ebola, vaksin VSV-EBOV (Ervebo) telah diakui keberhasilannya dalam mengendalikan wabah di Afrika. Vaksin ini menggunakan virus vesicular stomatitis yang telah dimodifikasi untuk mengekspresikan protein permukaan Ebola, sehingga memicu respons kekebalan yang kuat. Selain vaksinasi, terapi seperti penggunaan antibodi monoklonal telah menunjukkan keberhasilan dalam mengobati infeksi. Contohnya, terapi

REGN-COV2 yang terdiri dari kombinasi dua antibodi monoklonal telah digunakan untuk mengobati pasien COVID-19. Terapi serupa juga sedang dikembangkan untuk Ebola (Escudero-Pérez et al., 2023).

KESIMPULAN

Kelelawar memiliki peran kunci sebagai reservoir alami bagi berbagai virus, termasuk SARS-CoV-2 dan Ebola, yang ditandai dengan perbedaan mekanisme klinis, respons imun, serta metode penularan. SARS-CoV-2 menyebar melalui droplet pernapasan, sementara Ebola melalui kontak langsung dengan cairan tubuh. Pemahaman tentang karakteristik unik masing-masing patogen membuka jalan bagi pengembangan strategi diagnostik, vaksinasi, dan terapi yang lebih efektif. Penelitian lebih lanjut mengenai adaptasi imunologis kelelawar dapat membantu mengurangi risiko pandemi di masa depan dan meningkatkan kemampuan manusia dalam mencegah penyebaran virus mematikan ini.

DAFTAR PUSTAKA

- A, R., P, A., & M, H. (2016). Biological Differences between Normal and Tumoral Tissue Not Always an Increase of Expression is Indicator of Poor Prognosis. *Journal of Lung Diseases & Treatment*, 02(04). https://doi.org/10.4172/2472-1018.1000e107
- Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., ... Jonigk, D. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. *New England Journal of Medicine*, 383(2), 120–128. https://doi.org/10.1056/NEJMoa2015432
- Admin Infem. (2021, December 8). Penyakit Virus Nipah.
- Allocati, N., Petrucci, A. G., Di Giovanni, P., Masulli, M., Di Ilio, C., & De Laurenzi, V. (2016). Bat-man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. *Cell Death Discovery*, 2, 16048. https://doi.org/10.1038/cddiscovery.2016.48
- Alsamman, A. M., & Zayed, H. (2020). The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1. *PLOS ONE*, *15*(12), e0243270. https://doi.org/10.1371/journal.pone.0243270
- Baseler, L., Chertow, D. S., Johnson, K. M., Feldmann, H., & Morens, D. M. (2017). The Pathogenesis of Ebola Virus Disease. *Annual Review of Pathology: Mechanisms of Disease*, 12(1), 387–418. https://doi.org/10.1146/annurev-pathol-052016-100506
- Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., ... tenOever, B. R. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. *Cell*, 181(5), 1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026
- Brook, C. E., Boots, M., Chandran, K., Dobson, A. P., Drosten, C., Graham, A. L., ... van Leeuwen, A. (2020). Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. *ELife*, *9*. https://doi.org/10.7554/eLife.48401
- Danu Damarjati. (2022, March 6). Perbandingan Mematikan: Virus Corona, MERS, SARS, dan Ebola /.
- Edwards, R. R., Dworkin, R. H., Sullivan, M. D., Turk, D. C., & Wasan, A. D. (2016). The Role of Psychosocial Processes in the Development and Maintenance of Chronic Pain. *The Journal of Pain*, 17(9), T70–T92. https://doi.org/10.1016/j.jpain.2016.01.001
- Escudero-Pérez, B., Lawrence, P., & Castillo-Olivares, J. (2023). Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. *Frontiers in Immunology*, 14. https://doi.org/10.3389/fimmu.2023.1156758
- Fan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. *Viruses*, *11*(3), 210. https://doi.org/10.3390/v11030210

- Gustine, J. N., & Jones, D. (2021). Immunopathology of Hyperinflammation in COVID-19. *The American Journal of Pathology*, 191(1), 4–17. https://doi.org/10.1016/j.ajpath.2020.08.009
- InfoSehat FKUI. (2023, September 26). Kenali Virus Nipah: Menular dari Kelelawar dan Babi, Mungkinkah jadi Pemicu Pandemi?
- Jin Tian, Jiumeng Sun, Dongyan Li, Alexander Lai, Shuo Su, & Michael Veit. (2022). Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. *Cell Reports*, 39(11).
- Kondratowicz, A. S., Lennemann, N. J., Sinn, P. L., Davey, R. A., Hunt, C. L., Moller-Tank, S., ... Maury, W. (2011). T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for *Zaire Ebolavirus* and *Lake Victoria Marburgvirus*. *Proceedings of the National Academy of Sciences*, 108(20), 8426–8431. https://doi.org/10.1073/pnas.1019030108
- Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., ... Swanepoel, R. (2005). Fruit bats as reservoirs of Ebola virus. *Nature*, 438(7068), 575–576. https://doi.org/10.1038/438575a
- Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature Microbiology*, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
- McElroy, E., & Shevlin, M. (2014). The development and initial validation of the cyberchondria severity scale (CSS). *Journal of Anxiety Disorders*, 28(2), 259–265. https://doi.org/10.1016/j.janxdis.2013.12.007
- Messaoudi, I., Amarasinghe, G. K., & Basler, C. F. (2015). Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. *Nature Reviews Microbiology*, 13(11), 663–676. https://doi.org/10.1038/nrmicro3524
- Nur Janti. (2020, April 9). Korona dan Beragam Virus yang Berasal dari Kelelawar.
- Olival, K., & Hayman, D. (2014). Filoviruses in Bats: Current Knowledge and Future Directions. *Viruses*, 6(4), 1759–1788. https://doi.org/10.3390/v6041759
- Popovic, M. (2022). Why doesn't Ebola virus cause pandemics like SARS-CoV-2? *Microbial Risk Analysis*, 22, 100236. https://doi.org/10.1016/j.mran.2022.100236
- Siddiqui, R., Khan, S., & Khan, N. A. (2022). Ebola virus disease: Current perception of clinical features, diagnosis, pathogenesis, and therapeutics. *Acta Virologica*, 65(04), 350–364. https://doi.org/10.4149/av 2021 409
- Usma Aulia, Varhanno khallifhatul khanh, Intan Pujilestari, Anna Zukiaturrahmah, Sedrisa Lidya Pertiwi, Rita Suzana, ... Juliadi Ramadhan. (2024). *Pengantar Kesehatan Masyarakat Veteriner Dan Zoonosis* (1st ed.; Indrawan Mohamad Gita, Ed.). Padang: CV. Gita Lentera.
- V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. *Nature Reviews Microbiology*, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
- Wisnu AS. (2020, September 28). Catatan Sejarah tentang Covid-19 dan Virus Lain.
- Zacharias Wuragil. (2020, January 25). Ada Kelelawar di Balik Wabah SARS, MERS, dan Virus Corona Wuhan.
- Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., ... Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature*, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7