Perbandingan mekanisme klinis yang disebabkan oleh kelelawar terhadap Sars-Cov-2 dan Ebola

Comparison of clinical mechanism caused by bats against Sars-Cov-2 and Ebola

Authors

  • Risha Meidian Shabirah Universitas Pendidikan Indonesia
  • Alfinny Boanerges Universitas Pendidikan Indonesia Kampus di Sumedang
  • Popi Sopiah Universitas Pendidikan Indonesia Kampus di Sumedang

DOI:

https://doi.org/10.33023/jikep.v11i2.2532

Keywords:

Ebola, Kelelawar, Mekanisme Klinis, SARS-CoV-2

Abstract

Kelelawar telah lama dikenal sebagai reservoir alami bagi berbagai virus zoonosis, termasuk SARS-CoV-2 dan Ebola, yang memiliki dampak signifikan terhadap kesehatan global. Tujuan Penelitian ini bertujuan untuk mengeksplorasi dan membandingkan mekanisme klinis yang terkait dengan infeksi yang ditransmisikan oleh kelelawar, khususnya pada virus SARS-CoV-2 dan virus Ebola. Penelitian menggunakan narrative review dengan menggunakan database yaitu Google Scholar, PubMed, OpenAlex, dan Crossref. Awal pencarian jurnal ditemukan 420 jurnal dan dianalisis berdasarkan abstrak, tujuan penelitian, membaca full text, dan kriteria tahun 2015-2025. Tahap akhir ditemukan 7 jurnal yang relevan dengan tujuan penulisan. Hasil menunukkan (1) terdapat perbedaan signifikan dalam jalur penyebaran dan respons imun, (2) SARS-CoV-2 lebih berdampak menyebabkan wabah penyakit dibandingkan virus Ebola, (3) Kedua virus memiliki perbedaan terkait metode diagnosis yang mempengaruhi strategi penanganan. Penelitian ini diharapkan dapat memberikan pemahaman mendalam terhadap mekanisme klinis untuk dapat mengembangkan strategi pencegahan, diagnostik, dan terapi untuk penyakit zoonosis. Penelitian ini menekankan pentingnya pengawasan terhadap potensi penyebaran virus dari kelelawar guna mencegah wabah penyakit di masa depan.

Downloads

Download data is not yet available.

References

A, R., P, A., & M, H. (2016). Biological Differences between Normal and Tumoral Tissue Not Always an Increase of Expression is Indicator of Poor Prognosis. Journal of Lung Diseases & Treatment, 02(04). https://doi.org/10.4172/2472-1018.1000e107

Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., … Jonigk, D. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine, 383(2), 120–128. https://doi.org/10.1056/NEJMoa2015432

Admin Infem. (2021, December 8). Penyakit Virus Nipah.

Allocati, N., Petrucci, A. G., Di Giovanni, P., Masulli, M., Di Ilio, C., & De Laurenzi, V. (2016). Bat-man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discovery, 2, 16048. https://doi.org/10.1038/cddiscovery.2016.48

Alsamman, A. M., & Zayed, H. (2020). The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1. PLOS ONE, 15(12), e0243270. https://doi.org/10.1371/journal.pone.0243270

Baseler, L., Chertow, D. S., Johnson, K. M., Feldmann, H., & Morens, D. M. (2017). The Pathogenesis of Ebola Virus Disease. Annual Review of Pathology: Mechanisms of Disease, 12(1), 387–418. https://doi.org/10.1146/annurev-pathol-052016-100506

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W.-C., Uhl, S., Hoagland, D., Møller, R., … tenOever, B. R. (2020). Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 181(5), 1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026

Danu Damarjati. (2022, March 6). Perbandingan Mematikan: Virus Corona, MERS, SARS, dan Ebola /.

Edwards, R. R., Dworkin, R. H., Sullivan, M. D., Turk, D. C., & Wasan, A. D. (2016). The Role of Psychosocial Processes in the Development and Maintenance of Chronic Pain. The Journal of Pain, 17(9), T70–T92. https://doi.org/10.1016/j.jpain.2016.01.001

Escudero-Pérez, B., Lawrence, P., & Castillo-Olivares, J. (2023). Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Frontiers in Immunology, 14. https://doi.org/10.3389/fimmu.2023.1156758

Fan, Y., Zhao, K., Shi, Z.-L., & Zhou, P. (2019). Bat Coronaviruses in China. Viruses, 11(3), 210. https://doi.org/10.3390/v11030210

Gustine, J. N., & Jones, D. (2021). Immunopathology of Hyperinflammation in COVID-19. The American Journal of Pathology, 191(1), 4–17. https://doi.org/10.1016/j.ajpath.2020.08.009

InfoSehat FKUI. (2023, September 26). Kenali Virus Nipah: Menular dari Kelelawar dan Babi, Mungkinkah jadi Pemicu Pandemi?

Jin Tian, Jiumeng Sun, Dongyan Li, Alexander Lai, Shuo Su, & Michael Veit. (2022). Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Reports , 39(11).

Kondratowicz, A. S., Lennemann, N. J., Sinn, P. L., Davey, R. A., Hunt, C. L., Moller-Tank, S., … Maury, W. (2011). T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proceedings of the National Academy of Sciences, 108(20), 8426–8431. https://doi.org/10.1073/pnas.1019030108

Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., … Swanepoel, R. (2005). Fruit bats as reservoirs of Ebola virus. Nature, 438(7068), 575–576. https://doi.org/10.1038/438575a

Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y

McElroy, E., & Shevlin, M. (2014). The development and initial validation of the cyberchondria severity scale (CSS). Journal of Anxiety Disorders, 28(2), 259–265. https://doi.org/10.1016/j.janxdis.2013.12.007

Messaoudi, I., Amarasinghe, G. K., & Basler, C. F. (2015). Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nature Reviews Microbiology, 13(11), 663–676. https://doi.org/10.1038/nrmicro3524

Nur Janti. (2020, April 9). Korona dan Beragam Virus yang Berasal dari Kelelawar.

Olival, K., & Hayman, D. (2014). Filoviruses in Bats: Current Knowledge and Future Directions. Viruses, 6(4), 1759–1788. https://doi.org/10.3390/v6041759

Popovic, M. (2022). Why doesn’t Ebola virus cause pandemics like SARS-CoV-2? Microbial Risk Analysis, 22, 100236. https://doi.org/10.1016/j.mran.2022.100236

Rachmatunnisa. (2020, May 26). Kenapa Banyak Virus Berasal dari Kelelawar Bisa Mematikan?

Siddiqui, R., Khan, S., & Khan, N. A. (2022). Ebola virus disease: Current perception of clinical features, diagnosis, pathogenesis, and therapeutics. Acta Virologica, 65(04), 350–364. https://doi.org/10.4149/av_2021_409

Usma Aulia, Varhanno khallifhatul khanh, Intan Pujilestari, Anna Zukiaturrahmah, Sedrisa Lidya Pertiwi, Rita Suzana, … Juliadi Ramadhan. (2024). Pengantar Kesehatan Masyarakat Veteriner Dan Zoonosis (1st ed.; Indrawan Mohamad Gita, Ed.). Padang : CV. Gita Lentera.

V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6

Wisnu AS. (2020, September 28). Catatan Sejarah tentang Covid-19 dan Virus Lain.

Zacharias Wuragil. (2020, January 25). Ada Kelelawar di Balik Wabah SARS, MERS, dan Virus Corona Wuhan.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Published

2025-06-10

How to Cite

Shabirah, R. M., Boanerges, A., & Sopiah, P. (2025). Perbandingan mekanisme klinis yang disebabkan oleh kelelawar terhadap Sars-Cov-2 dan Ebola: Comparison of clinical mechanism caused by bats against Sars-Cov-2 and Ebola . Jurnal Ilmiah Keperawatan (Scientific Journal of Nursing), 11(2), 196-208. https://doi.org/10.33023/jikep.v11i2.2532